Aditya Nandakumar Dhawale

Website: http://adityadhawale.github.io LinkedIn : www.linkedin.com/in/aditya-dhawale-97509b82 adityadhawale6@gmail.com (+1) (412) 807-0422

EDUCATION	The Robotics Institute, Carnegie Mellon University Masters of Science in Robotics (MSR) Expected May, 2020	QPA: 4.11
	Indian Institute of Technology, Guwahati Bachelor of Technology, (B.Tech.), Mechanical Engineering June 2016	QPA: 7.61
PUBLICATIONS	A. Dhawale and N. Michael, "Efficient Parametric Multi-Fidelity Surface Mapping," in <i>Robotics: Science and Systems</i> , July 2020 [Submitted]	
	A. Spitzer, X. Yang, J. Yao, A. Dhawale, K. Goel, M. Dabhi, M. Collins, C. Boirum, and N. Michael, "Fast and Agile Vision-Based Flight with Teleoperation and Collision Avoidance on a Multirotor," in <i>International Symposium on Experimental Robotics</i> . Springer, November 2018	
	A. Dhawale, X. Yang, and N. Michael, "Reactive Collision Avoidance using Real-Time Local Gaussian Mixture Model Maps," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018	
	A. Dhawale , K. Shaurya Shankar, and N. Michael, "Fast Monte-Carlo Localization on Aerial Vehicles Using Approximate Continuous Belief Representations," in <i>The IEEE</i> Conference on Computer Vision and Pattern Recognition (CVPR), June 2018	
EXPERIENCE	The Robotics Institute, Carnegie Mellon University Research Associate; Graduate Student Researcher	Aug 16 - Present Pittsburgh, PA
	• Developed a novel SLAM technique using Gaussian distributions as a succinct and accurate map representation	
	• The proposed map representation provides ≈ 100 times better compression than traditional mapping techniques, thus enabling real world distributed mapping	
	• Developed a particle filter based localization framework that runs at 10 Hz on Size Weight and Power (SWaP) constrained systems, using lightweight RGB-D sensors	
	• Constructed a low cost mapping framework for collision avoidance on aerial robots to enable $>10~{\rm m/s}$ flights through cluttered environments	
	The Robotics Institute, Carnegie Mellon University Robotics Institute Summer Scholar	May 16 - Aug 16 Pittsburgh, PA
	• Implemented and tested a calibration framework for computing relative transforms between multiple depth and color sensors	
	Indian Institute of Technology Undergraduate Thesis	July 15 - May 16 Guwahati, India
	• Built and developed an Autonomous Underwater Vehicle with autonomous naviga- tion, stereo mapping, and PD control	
EXPERTISE	Languages : C/C++, Python, CUDA, MATLAB, ROS, IAT _E X Concepts : SLAM, Computer Vision, Machine Learning	